🎉 30% OFF Pro Plan今すぐ申し込む
Medical AI Background

MedGemma

医療テキストと画像解析のための高度なAIモデル

Dr7.ai Medical AIプラットフォーム提供

Google DeepMindの最先端MedGemma AIモデルで次世代のヘルスケアアプリケーションを強化。

🧠
2
モデルバリアント
4B
マルチモーダルモデル
27B
テキスト専用モデル

MedGemmaインタラクティブデモを試す

医療テキストと画像分析のためのMedGemma 4B ITモデルの力を体験

Want More Powerful AI Medical Diagnosis Features?

Upgrade to Pro version to unlock advanced AI models, unlimited conversations, professional medical image analysis and more powerful features

10+
AI Model Options
24/7
24/7 Support
Unlimited Conversations

MedGemmaとは

MedGemma MedGemmaは、医療テキストと画像を理解し処理するために特別に設計された最先端のAIモデルのコレクションです。Google DeepMindによって開発されたMedGemmaは、医療人工知能分野における重要な進歩を表しています。

強力なGemma 3アーキテクチャに基づいて構築されたMedGemmaは、ヘルスケアアプリケーション向けに最適化されており、開発者にMedGemmaを使用した革新的な医療ソリューションを作成するための堅牢なツールを提供します。

Health AI Developer Foundationsの一部として、MedGemmaは高度な医療AI技術へのアクセスを民主化し、世界中の研究者と開発者がMedGemmaを使用してより効果的なヘルスケアアプリケーションを構築できるようにすることを目指しています。

📅

Recent Development

Launched at Google I/O 2025

May
2025

Released as part of Google's ongoing efforts to enhance healthcare through technology

Features

Powerful capabilities designed for medical applications

MedGemma Model Variants

🖼️

4B Multimodal Model

Processes both medical images and text with 4 billion parameters, using a SigLIP image encoder pre-trained on de-identified medical data.

📄

27B Text-Only Model

Optimized for deep medical text comprehension and clinical reasoning with 27 billion parameters.

Key Capabilities

  • Medical image classification (radiology, pathology, etc.)
  • Medical image interpretation and report generation
  • Medical text comprehension and clinical reasoning
  • Patient preclinical interviews and triaging
  • Clinical decision support and summarization

Performance Comparison

Use Cases for MedGemma

🏥

Healthcare Application Development

Build AI-based applications that examine medical images, generate reports, and triage patients.

🔬

Medical Research and Innovation

Accelerate research with open access to advanced AI through Hugging Face and Google Cloud.

👨‍⚕️

Clinical Support Roles

Enhance patient interviewing and clinical decision support for improved healthcare efficiency.

How to Use

Implementation guides and adaptation methods

1

Access MedGemma Models

MedGemma models are accessible on platforms like Hugging Face, subject to the terms of use by the Health AI Developer Foundations.

# Example Python code to load MedGemma model
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("google/medgemma-4b-it")
model = AutoModelForCausalLM.from_pretrained("google/medgemma-4b-it")
2

Adaptation Methods

Prompt Engineering

Use few-shot examples and break tasks into subtasks to enhance performance.

Fine-Tuning

Optimize using your own medical data with resources like GitHub notebooks.

Agentic Orchestration

Integrate with tools like web search, FHIR generators, and Gemini Live.

3

Deployment Options

Choose the right deployment method based on your requirements:

💻

Local Deployment

Run models locally for experimentation and development purposes.

☁️

Cloud Deployment

Deploy as scalable HTTPS endpoints on Vertex AI through Model Garden for production-grade applications.

Implementation Considerations

Validation Requirements

MedGemma models are not clinical-grade out of the box. Developers must validate performance and make necessary improvements before deploying in production environments.

Terms of Use

The use of MedGemma is governed by the Health AI Developer Foundations terms of use, which developers must review and agree to before accessing models.

よくある質問

MedGemmaに関するよくある質問

4Bマルチモーダルと27Bテキスト専用MedGemmaモデルの主な違いは何ですか?

4Bマルチモーダルモデルは医療画像とテキストを処理し、27Bモデルはテキスト処理と臨床推論に特化しています。

MedGemmaモデルは即座に臨床使用できますか?

いいえ、MedGemmaモデルは本番環境での展開前に検証と改善が必要です。