Google DeepMindの最先端MedGemma AIモデルで次世代のヘルスケアアプリケーションを強化。
医療テキストと画像分析のためのMedGemma 4B ITモデルの力を体験
Upgrade to Pro version to unlock advanced AI models, unlimited conversations, professional medical image analysis and more powerful features
MedGemma MedGemmaは、医療テキストと画像を理解し処理するために特別に設計された最先端のAIモデルのコレクションです。Google DeepMindによって開発されたMedGemmaは、医療人工知能分野における重要な進歩を表しています。
強力なGemma 3アーキテクチャに基づいて構築されたMedGemmaは、ヘルスケアアプリケーション向けに最適化されており、開発者にMedGemmaを使用した革新的な医療ソリューションを作成するための堅牢なツールを提供します。
Health AI Developer Foundationsの一部として、MedGemmaは高度な医療AI技術へのアクセスを民主化し、世界中の研究者と開発者がMedGemmaを使用してより効果的なヘルスケアアプリケーションを構築できるようにすることを目指しています。
Launched at Google I/O 2025
Released as part of Google's ongoing efforts to enhance healthcare through technology
Powerful capabilities designed for medical applications
Processes both medical images and text with 4 billion parameters, using a SigLIP image encoder pre-trained on de-identified medical data.
Optimized for deep medical text comprehension and clinical reasoning with 27 billion parameters.
Build AI-based applications that examine medical images, generate reports, and triage patients.
Accelerate research with open access to advanced AI through Hugging Face and Google Cloud.
Enhance patient interviewing and clinical decision support for improved healthcare efficiency.
Implementation guides and adaptation methods
MedGemma models are accessible on platforms like Hugging Face, subject to the terms of use by the Health AI Developer Foundations.
# Example Python code to load MedGemma model
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/medgemma-4b-it")
model = AutoModelForCausalLM.from_pretrained("google/medgemma-4b-it")
Use few-shot examples and break tasks into subtasks to enhance performance.
Optimize using your own medical data with resources like GitHub notebooks.
Integrate with tools like web search, FHIR generators, and Gemini Live.
Choose the right deployment method based on your requirements:
Run models locally for experimentation and development purposes.
Deploy as scalable HTTPS endpoints on Vertex AI through Model Garden for production-grade applications.
MedGemma models are not clinical-grade out of the box. Developers must validate performance and make necessary improvements before deploying in production environments.
The use of MedGemma is governed by the Health AI Developer Foundations terms of use, which developers must review and agree to before accessing models.
MedGemmaに関するよくある質問
4Bマルチモーダルモデルは医療画像とテキストを処理し、27Bモデルはテキスト処理と臨床推論に特化しています。
いいえ、MedGemmaモデルは本番環境での展開前に検証と改善が必要です。