Comece com os modelos de IA médica do Google através de acesso abrangente à API. Solicite chaves de API e integre capacidades avançadas de IA médica em suas aplicações.
Comece com as APIs MedGemma e MedSigLIP
Modelos avançados de IA médica de texto e multimodal
Acesse as poderosas capacidades do MedGemma para análise de texto médico, compreensão de imagens e suporte à decisão clínica.
Modelo leve para tarefas de imagens e texto médico
4B parâmetrosModelo de linguagem grande especializado em texto médico
27B parâmetrosModelo multimodal avançado para tarefas médicas complexas
27B parâmetrosCodificador de imagem-texto médico para classificação e recuperação
Aproveite a arquitetura eficiente de torre dupla do MedSigLIP para classificação de imagens médicas, inferência zero-shot e recuperação semântica.
Escolha o melhor método de implantação para suas necessidades
Execute modelos localmente usando transformers do Hugging Face
Implante como endpoints de API REST no Google Cloud
Processe grandes conjuntos de dados com jobs em lote do Vertex AI
Get started with implementation examples
from transformers import pipeline
# Load MedGemma model
pipe = pipeline(
"text-generation",
model="google/medgemma-27b-text-it",
torch_dtype="bfloat16",
device="cuda"
)
# Generate medical text
response = pipe(
"What are the symptoms of diabetes?",
max_length=200,
temperature=0.7
)
print(response[0]['generated_text'])
import requests
import json
# Vertex AI endpoint
endpoint_url = "https://your-endpoint.googleapis.com/v1/projects/your-project/locations/us-central1/endpoints/your-endpoint:predict"
# Request payload
payload = {
"instances": [{
"prompt": "What are the symptoms of diabetes?",
"max_tokens": 200,
"temperature": 0.7
}]
}
# Make API request
headers = {
"Authorization": "Bearer YOUR_ACCESS_TOKEN",
"Content-Type": "application/json"
}
response = requests.post(endpoint_url, json=payload, headers=headers)
result = response.json()
print(result['predictions'][0]['generated_text'])
from transformers import AutoModel, AutoProcessor
import torch
from PIL import Image
# Load MedSigLIP model
model = AutoModel.from_pretrained("google/medsiglip")
processor = AutoProcessor.from_pretrained("google/medsiglip")
# Load and process image
image = Image.open("medical_image.jpg")
text = "chest x-ray showing pneumonia"
# Process inputs
inputs = processor(
text=[text],
images=[image],
return_tensors="pt",
padding=True
)
# Get embeddings
with torch.no_grad():
outputs = model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
# Calculate similarity
similarity = torch.cosine_similarity(image_embeds, text_embeds)
print(f"Similarity score: {similarity.item():.4f}")
import torch
from transformers import AutoModel, AutoProcessor
from PIL import Image
# Load model and processor
model = AutoModel.from_pretrained("google/medsiglip")
processor = AutoProcessor.from_pretrained("google/medsiglip")
# Define classification labels
labels = [
"normal chest x-ray",
"pneumonia chest x-ray",
"covid-19 chest x-ray",
"lung cancer chest x-ray"
]
# Load image
image = Image.open("chest_xray.jpg")
# Process inputs
inputs = processor(
text=labels,
images=[image] * len(labels),
return_tensors="pt",
padding=True
)
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits_per_image
probs = torch.softmax(logits, dim=-1)
# Get top prediction
top_idx = torch.argmax(probs, dim=-1)
confidence = probs[0, top_idx].item()
print(f"Prediction: {labels[top_idx]}")
print(f"Confidence: {confidence:.4f}")
Documentação completa e exemplos